
Homework 2: Due Tuesday, September 8

Exercises

Exercise 1: Let a, b, c ∈ Z. Using only the material through Section 2.4 (so without using the Fundamental
Theorem of Arithmetic), show that the following are equivalent, i.e. prove that (1) implies (2) and also that
(2) implies (1):

1. gcd(ab, c) = 1.

2. gcd(a, c) = 1 and gcd(b, c) = 1.

Exercise 2: Given a ∈ Z, let Mult(a) = {n ∈ Z : a | n} be the set of multiples of a.
a. Show that for all a, b ∈ Z, there exists a unique m ∈ N such that Mult(a) ∩Mult(b) = Mult(m).
b. Let a, b ∈ Z, and let m be the unique element of N given by part (a). Show that a | m, that b | m, and
that if n ∈ Z is such that both a | n and b | n, then m | n.
Note: For a given a, b ∈ Z, the unique such m is called the least common multiple of a and b.

Exercise 3: Let A,B,C be sets and let f : A → B and g : B → C be functions.
a. Show that if g ◦ f is injective, then f is injective.
b. Show that if g ◦ f is surjective and g is injective, then f is surjective.

Problems

Problem 1: Let a, b, c ∈ Z with a ≥ 0. Show that gcd(ab, ac) = a · gcd(b, c).
Aside: Think about why we have the assumption that a ≥ 0 here. What would happen if a < 0?
Hint: Let m = gcd(b, c). Show directly that am satisfies the defining properties of gcd(ab, ac).

Problem 2: In this problem, we show how to use the existence of the gcd of two integers to prove the
existence of the gcd of three integers (which can, of course, be further generalized). Let a, b, c ∈ Z, and let
m = gcd(a, gcd(b, c)).
a. Show that m divides each of a, b, and c.
b. Show that if d divides each of a, b, and c, then d | m.
c. Show that there exist x, y, z ∈ Z with ax+ by + cz = m.

Problem 3: Let S = {2n : n ∈ Z} be the set of even integers. Notice that the sum and product of two
elements of S is still an element of S. Call an element a ∈ S irreducible if a > 0 and there is no way to write
a = bc with b, c ∈ S. Notice that 6 is irreducible in S (because there is no way to write 6 as a product of
two even numbers) even though it is not prime in Z.
a. Give a characterization (with proof) of the irreducible elements of S.
b. Show that the analogue of Fundamental Theorem of Arithmetic fails in S by finding a positive element
of S which does not factor uniquely (up to order) into irreducibles.

Problem 4: Let A = N+ and define a ∼ b to mean that there exists n ∈ Z with a = 2nb.
a. Show that ∼ is an equivalence relation on A.
b. Characterize (with proof) which elements of A are the smallest elements of their equivalence class. In
other words, find a simple characterization of the set {a ∈ A : a ≤ b for all b ∈ A with a ∼ b}.



Problem 5: Let Q and P be defined as in Section 3.5 of the notes. Thus, Q is the set of equivalence classes
of the set Z× (Z\{0}) under the equivalence relation (a, b) ∼ (c, d) if ad = bc, and P is the set of equivalence
classes of the set R2\{(0, 0)} under the equivalence relation (x1, y1) ∼ (x2, y2) if there exists a real number
λ 6= 0 with (x1, y1) = (λx2, λy2). Determine which of the following functions on equivalence classes are
well-defined. In each case, either give a proof or a specific counterexample.
a. f : Q → Z defined by f((a, b)) = a− b.
b. f : Q → Q defined by f((a, b)) = (a2 + 3ab+ b2, 5b2).
c. f : P → R defined by

f((x, y)) =
2xy3 + 5xy

x4 + y4

d. f : P → P defined by f((x, y)) = (x3 + 5xy2, y3).


