Homework 2 : Due Friday, January 31

Note: For the first four problems, use only the material through Section 2.4, so do not use any properties of prime factorizations.

Problem 1: Let $a, b, c \in \mathbb{Z}$. Suppose that $a \mid c$, that $b \mid c$, and that gcd(a, b) = 1. Show that $ab \mid c$.

Problem 2: Let $a, b, c \in \mathbb{Z}$. Show that the following are equivalent (in other words, prove that 1 implies 2 and also that 2 implies 1):

- 1. gcd(ab, c) = 1
- 2. gcd(a, c) = 1 and gcd(b, c) = 1

Problem 3: Find, with proof, all $n \in \mathbb{Z}$ such that gcd(n, n+2) = 2.

Problem 4: Let $a, b \in \mathbb{N}^+$ and let d = gcd(a, b). Since d is a common divisor of a and b, we may fix $k, \ell \in \mathbb{N}$ with a = kd and $b = \ell d$. Let $m = k\ell d$.

- a. Show that $a \mid m, b \mid m$, and dm = ab.
- b. Show that $gcd(k, \ell) = 1$.

c. Suppose that $n \in \mathbb{Z}$ is such that $a \mid n$ and $b \mid n$. Show that $m \mid n$.

Because of parts a and c above, the number m is called the *least common multiple* of a and b and is written as lcm(a, b). Since dm = ab from part a, it follows that $gcd(a, b) \cdot lcm(a, b) = ab$.

Problem 5: Let $S = \{2n : n \in \mathbb{Z}\}$ be the set of even integers. Notice that the sum and product of two elements of S is still an element of S. Call an element of $a \in S$ *irreducible* if a > 0 and there is no way to write a = bc with $b, c \in S$. Notice that 6 is irreducible in S even though it is not prime in \mathbb{Z} (although $6 = 2 \cdot 3$, we have that $3 \notin S$).

a. Give a characterization of the irreducible elements of S.

b. Show that the analogue of Fundamental Theorem of Arithmetic fails in S by finding a positive element of S which does *not* factor uniquely (up to order) into irreducibles.

Problem 6: Let $A = \mathbb{N}$ and $a \sim b$ if and only if there exists $n \in \mathbb{Z}$ with $a = 2^n b$.

a. Show that \sim is an equivalence relation on A.

b. Characterize which elements of \mathbb{N} are the smallest elements of their equivalence class.