Homework 7 : Due Monday, February 24

Problem 1: Let $G = A_4$ and $H = \langle (1 \ 2 \ 3) \rangle = \{ id, (1 \ 2 \ 3), (1 \ 3 \ 2) \}$. Compute the *left and right* cosets of H in G.

Problem 2: Let G be a finite group with |G| = n, and let $H = \{(a, a) : a \in G\}$. a. Show that H is a subgroup of $G \times G$. b. Compute $[G \times G : H]$.

Problem 3: Let H be a subgroup of G and let $a \in G$. Show that if aH = Hb for some $b \in G$, then aH = Ha. In other words, if the left coset aH equals some right coset of H in G, then it must equal the right coset Ha.

Hint: Use the general theory of equivalence relations to simplify your life.

Problem 4: Suppose that H is a subgroup of a group G with [G:H] = 2. Suppose that $a, b \in G$ with both $a \notin H$ and $b \notin H$. Show that $ab \in H$. *Hint:* Think about the four cosets eH, aH, bH, and abH.

Problem 5: Let G be a group and let H and K be subgroups of G. Let $a \in G$. Show that the two sets $aH \cap aK$ and $a(H \cap K)$ are equal. Thus, the left cosets of the subgroup $H \cap K$ are obtained by intersecting the corresponding left cosets of H and K individually.

Problem 6: Let G be a group. Suppose that H and K are finite subgroups of G such that |H| and |K| are relatively prime. Show that $H \cap K = \{e\}$. *Hint:* Try to show that $|H \cap K| = 1$.

Problem 7: Suppose that G and H are finite groups. Show that if |G| and |H| are not relatively prime, then $G \times H$ is not cyclic (even if G and H are cyclic).

Note: This is the converse to Problem 3b on Homework 5.