Homework 1 : Due Wednesday, February 3

Problem 1: Show that $4 \nmid n^2 + 2$ for all $n \in \mathbb{Z}$.

Problem 2: Prove that there are no integers x and y satisfying $3y^2 - 1 = x^2$.

Problem 3: Suppose that $a, b \in \mathbb{Z}$ are relatively prime and that both $a \mid n$ and $b \mid n$. a. Without using the Fundamental Theorem of Arithmetic, show that $ab \mid n$. b. Using the Fundamental Theorem of Arithmetic, show that $ab \mid n$.

Problem 4: Suppose that $a, b \in \mathbb{N}$ are relatively prime and that ab is a square. Show that each of a and b are squares. Is the assumption that a and b are relatively prime necessary?

Problem 5: Find, with justification, the smallest integer $n \ge 1$ such that n/2 is a square, n/3 is a cube, and n/5 is a fifth power.

Problem 6: Show that there are arbitrarily large gaps in the primes, i.e. that for any $n \in \mathbb{N}$, there exists n consecutive composite numbers.

Hint: n! is your friend.

Problem 7: Prove that there are infinitely many primes of the form 6n + 5.

Hint: Look at Lemma 5.2 and Theorem 5.3 in Bolker. This is one very special case of a famous theorem of number theory known as *Dirichlet's Theorem*, which says that if a and b are relatively prime, then there are infinitely many primes of the form an + b.

Problem 8: Fix a prime p. Define a function $e_p: \mathbb{Z} \to \mathbb{N} \cup \{\infty\}$ as follows. Let $e_p(0) = \infty$, and given $a \in \mathbb{Z} - \{0\}$, let $e_p(a)$ be the largest $k \in \mathbb{N}$ such that $p^k \mid a$.

- a. Show that $e_p(ab) = e_p(a) + e_p(b)$ for all $a, b \in \mathbb{Z}$.
- b. Show that $e_p(a+b) \ge \min\{e_p(a), e_p(b)\}$ for all $a, b \in \mathbb{Z}$.

Problem 9: Fix a prime p. We extend the function $e_p: \mathbb{Z} \to \mathbb{N} \cup \{\infty\}$ to a function $v_p: \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}$ by letting $v_p(0) = \infty$ and $v_p(\frac{a}{b}) = e_p(a) - e_p(b)$.

a. Show that this function is well-defined, i.e. if $a, b, c, d \in \mathbb{Z}$ with $\frac{a}{b} = \frac{c}{d}$, then $v_p(\frac{a}{b}) = v_p(\frac{c}{d})$.

b. Show that $v_p(xy) = v_p(x) + v_p(y)$ for all $x, y \in \mathbb{Q}$.

c. Show that $v_p(x+y) \ge \min\{v_p(x), v_p(y)\}$ for all $x, y \in \mathbb{Q}$.

I suggest using the properties of e_p you established in Problem 8 rather that doing everything from scratch. This problem shows that v_p is a special type of function called a *discrete valuation* on the field \mathbb{Q} . It is called the *p*-adic valuation on \mathbb{Q} .