Homework 8 : Due Wednesday, April 21

Problem 1: Find (with proof) the minimal polynomial of $\sqrt{2-\sqrt{2}}$ over \mathbb{Q} .

Problem 2: Find values of $a, b \in \mathbb{N}^+$ such that $[\mathbb{Q}(\sqrt[3]{a+\sqrt[4]{b}}):\mathbb{Q}] = 12$. Justify your answer.

Problem 3:

- a. Show that $x^5 + x^2 + 1 \in (\mathbb{Z}/2\mathbb{Z})[x]$ is irreducible in $(\mathbb{Z}/2\mathbb{Z})[x]$. b. Show that $3x^5 + 2x^4 x^2 + 5$ is irreducible in $\mathbb{Q}[x]$.

Problem 4:

a. Show that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$ b. Show that $x^4 - 10x^2 + 1$ is irreducible in $\mathbb{Q}[x]$.

Hint: It is possible to do the parts of this problem in either order.

Problem 5: Let $p(x) = x^3 + 3x + 2$.

a. Show that p(x) is irreducible in $\mathbb{Q}[x]$.

b. Show that p(x) has exactly one root in \mathbb{R} .

c. Let α be the unique real root of p(x). We know from part a that p(x) is the minimal polynomial of α over \mathbb{R} , hence $\{1, \alpha, \alpha^2\}$ is a basis of $\mathbb{Q}(\alpha)$ over \mathbb{Q} by Theorem 6.14. In particular, we have

$$\mathbb{Q}(\alpha) = \{a + b\alpha + c\alpha^2 : a, b, c \in \mathbb{Q}\}\$$

Now we clearly have $\alpha^5 - \frac{2}{5}\alpha^3 + 42 \in \mathbb{Q}(\alpha)$. Find $a, b, c \in \mathbb{Q}$ such that

$$\alpha^5 - \frac{2}{5}\alpha^3 + 42 = a + b\alpha + c\alpha^2$$