
Homework 1 : Due Wednesday, February 1

Problem 1: Suppose that a, b ∈ Z are relatively prime and that both a | n and b | n.
a. Without using the Fundamental Theorem of Arithmetic, show that ab | n.
b. Using the Fundamental Theorem of Arithmetic, show that ab | n.

Problem 2: Let p ∈ N+ be prime. Define a function ordp : Z → N ∪ {∞} as follows. Let ordp(0) = ∞,
and given a ∈ Z − {0}, let ordp(a) be the largest k ∈ N such that pk | a. Without using the Fundamental
Theorem of Arithmetic, prove each of the following:
a. Show that ordp(ab) = ordp(a) + ordp(b) for all a, b ∈ Z.
b. Show that ordp(a + b) ≥ min{ordp(a), ordp(b)} for all a, b ∈ Z.
c. Show that ordp(a + b) = min{ordp(a), ordp(b)} for all a, b ∈ Z with ordp(a) 6= ordp(b).
Note: In these problems, you should interpret arithmetic with ∞ in the “obvious” ways. That is, let
k +∞ =∞ for all k ∈ N ∪ {∞} and min{k,∞} = k for all k ∈ N ∪ {∞}.

Problem 3: Give a characterization of the integers which can be written as the difference of two squares.

Problem 4: Let E = {2n : n ∈ Z} be the set of even integers. Notice that the sum and product of two
elements of E is still an element of E, and that E is closed under additive inverses. Thus, E is almost a
ring in that the only property it fails is the existence of a multiplicative identity. Call an element a ∈ E
irreducible if a > 0 and there is no way to write a = bc with b, c ∈ E. Notice that 6 is irreducible in E even
though it is not irreducible in Z.
a. Give a characterization of the irreducible elements of E.
b. Show that the analogue of Fundamental Theorem of Arithmetic fails in E by finding a positive element
of E which does not factor uniquely (up to order) into irreducibles.

Problem 5: Let R be a (commutative) ring and let I and J be ideals of R. Using these two ideals, there
are (at least) three natural ways to build new ideals:

• I ∩ J

• I + J = {a + b : a ∈ I, b ∈ J}

• IJ = {c1d1 + c2d2 + · · ·+ ckdk : k ∈ N+, ci ∈ I, di ∈ J}

You might have guessed that the definition of IJ should have been {cd : c ∈ I, d ∈ J}, but this is not
generally closed under addition (which is why our definition is finite sums of such products). You should
convince yourself that I ∩ J and I + J are each ideals of R. Also, you should convince yourself that I ∩ J is
the largest ideal contained in both I and J , while I + J is the smallest ideal containing both I and J .
a. Prove that IJ is an ideal of R.
b. Prove that IJ ⊆ I ∩ J .
c. Show that if I = 〈a〉 and J = 〈b〉, then IJ = 〈ab〉.
d. Find an example of ideals I and J of some commutative ring R for which IJ ( I ∩ J .

Problem 6: Let R be a ring and let I and J be ideals of R. We say that I and J are comaximal if I +J = R
(this is equivalent to saying that there is no proper ideal containing both I and J). Give a characterization
of the comaximal ideals of Z.
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