## Homework 7 : Due Friday, March 16

**Problem 1:** Find the minimal polynomial of each of the following over  $\mathbb{Q}$ .

- a.  $\sqrt[3]{2+1}$
- b.  $\sqrt{2 \sqrt{2}}$ c.  $\sqrt{3 2\sqrt{2}}$ .

## Problem 2:

a. Show that  $x^5 + x^2 + \overline{1} \in (\mathbb{Z}/2\mathbb{Z})[x]$  is irreducible in  $(\mathbb{Z}/2\mathbb{Z})[x]$ . b. Show that  $3x^5 + 10x^4 - x^2 + 5$  is irreducible in  $\mathbb{Q}[x]$ .

**Problem 3:** Let  $p(x) = x^3 + 9x + 6 \in \mathbb{Q}[x]$ . a. Show that p(x) is an irreducible polynomial in  $\mathbb{Q}[x]$  with a unique real root. b. Let  $\alpha$  be any root of p(x). We know that

$$\mathbb{Q}(\alpha) = \{a + b\alpha + c\alpha^2 : a, b, c \in \mathbb{Q}\}$$

Find the multiplicative inverse of  $1 + \alpha \in \mathbb{Q}(\alpha)$  and write it in the form  $a + b\alpha + c\alpha^2$  where  $a, b, c \in \mathbb{Q}$ .

**Problem 4:** Let  $\pi \in \mathbb{Z}[i]$  be prime and let  $I = \langle \pi \rangle$ . Show that  $\alpha^{N(\pi)} + I = \alpha + I$  for all  $\alpha \in \mathbb{Z}[i]$ . *Hint:* This should resemble an important fact about  $\mathbb{Z}$ .

**Problem 5:** Let R be a UFD with finitely many units. Show that every nonzero element r has finitely many divisors in R, and give a formula for the number of such divisors based on a factorization of r into irreducibles.

**Problem 6:** Determine all  $(x, y) \in \mathbb{Z}^2$  satisfying  $x^3 = y^2 + 4$ .

*Hint:* Break this up into cases based on whether y is even or odd. When y is even, make use of Problem 5 on Homework 6.