## Homework 8 : Due Wednesday, April 18

**Problem 1:** Let  $K = \mathbb{Q}(\sqrt{10})$ .

a. Show that  $3 + \sqrt{10}$  is the fundamental unit in  $\mathcal{O}_K$ .

b. Show that  $4 - \sqrt{10}$  and  $98 + 31\sqrt{10}$  are associates in  $\mathcal{O}_K$ .

## Problem 2:

a. Let  $\alpha \in \mathbb{C}$  be algebraic over  $\mathbb{Q}$ . Show that there exists  $m \in \mathbb{Z} \setminus \{0\}$  such that  $m\alpha$  is an algebraic integer. b. Let K be a number field. Show that K is the field of fractions of  $\mathcal{O}_K$ , i.e. show that K is smallest subfield of  $\mathbb{C}$  containing the ring  $\mathcal{O}_K$ .

**Problem 3:** Let  $d \in \mathbb{Z}$  be square-free with  $d \geq 2$ . Show that  $\mathbb{Z}[\sqrt{d}]$  is dense in the real line. That is, show that given any  $r, s \in \mathbb{R}$  with r < s, there exists  $\alpha \in \mathbb{Z}[\sqrt{d}]$  with  $r < \alpha < s$ . Note: Since  $\mathbb{Z}[\sqrt{d}] \subseteq \mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ , if follows that  $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$  is dense in the real line when  $d \equiv 1 \pmod{4}$ .

**Problem 4:** Let  $d \in \mathbb{Z}$  be square-free with  $d \leq -3$ . In this problem we work in  $\mathbb{Z}[\sqrt{d}]$  (so if  $d \equiv 1 \pmod{4}$ ), then we are *not* working in the ring of algebraic integers).

a. Show that  $\sqrt{d}$  and  $1 + \sqrt{d}$  are both irreducible in  $\mathbb{Z}[\sqrt{d}]$ .

b. Show that at least one of  $\sqrt{d}$  or  $1 + \sqrt{d}$  is not prime in  $\mathbb{Z}[\sqrt{d}]$ .

c. Show that  $\mathbb{Z}[\sqrt{d}]$  is not a UFD.

**Problem 5:** Let  $K = \mathbb{Q}(\sqrt{-5})$ . Working in  $R = \mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$ , let  $I = \langle 2, 1 + \sqrt{-5} \rangle$ .

- a. Show that I is a nonprincipal ideal of R.
- b. Show that |R/I| = 2.
- c. Show that I is a maximal (and hence prime) ideal of R.