Homework 4 : Due Wednesday, February 23

Problem 1: Let $K \prec F$ and $L \prec E$ be finite extensions. Let $\alpha: K \to L$ be an isomorphism and let $\tau: F \to E$ be an isomorphism which is an extension of α , i.e. $\tau(a) = \alpha(a)$ for all $a \in K$. Show that [F:K] = [E:L].

Problem 2:

- a. Show that $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$.
- b. Show that $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}] = 4.$
- c. Show that $\mathbb{Q}(\sqrt{2},\sqrt{3}) = \mathbb{Q}(\sqrt{2}+\sqrt{3}).$
- d. Find a fourth degree monic polynomial $p(x) \in \mathbb{Q}[x]$ that has $\sqrt{2} + \sqrt{3}$ as a root.
- e. Use parts b, c, and d to conclude that p(x) is the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} .

Problem 3: Suppose that $K \prec F$. Let $u \in F$ be algebraic over K.

- a. Give an example of the above situation where $K(u) \neq K(u^2)$.
- b. Suppose that the minimal polynomial of u over K has odd degree. Show that $K(u) = K(u^2)$.

Problem 4:

a. Show that $\mathbb{Q}(e^{2\pi i/3}) = \mathbb{Q}(i\sqrt{3})$. b. Find $[\mathbb{Q}(e^{2\pi i/11}, \sqrt[3]{7}) : \mathbb{Q}]$. c. Find $[\mathbb{Q}(31+7\sqrt[5]{2}-13\sqrt[5]{8}+42\sqrt[5]{16}) : \mathbb{Q}]$.

Problem 5: Let $a_1, a_2, \ldots, a_n \in \mathbb{Q}$ with each $a_i > 0$. Show that $\sqrt[3]{2} \notin \mathbb{Q}(\sqrt{a_1}, \sqrt{a_2}, \ldots, \sqrt{a_n})$.

Problem 6: Let $K = \mathbb{Z}/2\mathbb{Z}$ and let $p(x) = x^3 + x + 1 \in K[x]$. Notice that p(x) is irreducible in K[x] because it has degree 3 and has no roots in K. In class, we showed how to construct a extension of K in which p(x) has a root by considering the field

$$F = K[x]/\langle x^3 + x + 1 \rangle$$

If we let $u = \overline{x}$, then we can write

$$F = \{a + bu + cu^2 : a, b, c \in \mathbb{Z}/2\mathbb{Z}\}$$

where we add in the obvious way and multiply using the fact that $u^3+u+1=0$ and hence $u^3=-u-1=u+1$. a. Write out an 8×8 tables giving addition and multiplication in F.

- b. Factor the polynomial $x^3 + x + 1$ into irreducibles in F[x].
- c. Find the minimal polynomial of $u + 1 \in F$ over K.