Homework 5 : Due Wednesday, March 2

Problem 1: Prove that $\mathbb{Q}(\sqrt{2} + \sqrt{3})$ is a normal extension of \mathbb{Q} .

Problem 2: Working in \mathbb{C} , find the splitting field over \mathbb{Q} of each of the following and compute its degree. a. $x^4 - 2$ b. $x^4 + x^2 + 1$ c. $x^6 - 4$

Problem 3: Let $p(x) = x^3 - 3x^2 + 6x + 1 \in \mathbb{Q}[x]$.

a. Show that p(x) has a unique real root.

b. Working in \mathbb{C} , show that the splitting field of p(x) over \mathbb{Q} has degree 6.

Problem 4: Suppose that $\mathbb{Q} \prec F \prec \mathbb{C}$ and $[F : \mathbb{Q}] = 2$.

a. Show that there exists $r \in \mathbb{Q}$ with $F = \mathbb{Q}(\sqrt{r})$.

b. Let $a, b \in \mathbb{Z}$ with b > 0. Show that $\mathbb{Q}(\sqrt{\frac{a}{b}}) = \mathbb{Q}(\sqrt{ab})$.

c. A nonzero integer d is squarefree if it is not divisible by p^2 for any prime p. Show that there exists a squarefree $d \in \mathbb{Z}$ with $F = \mathbb{Q}(\sqrt{d})$.

Problem 5: Suppose that $K \prec F$ is a finite extension. Let $g(x) \in K[x]$ be irreducible and suppose that $\deg(g(x)) = p$ a prime. Show that if g(x) is not irreducible in F[x], then $p \mid [F:K]$. *Hint:* First extend F to a field L where g(x) has a root.