Homework 6 : Due Wednesday, March 9

Problem 1: Let K be a finite field with $|K| = p^n$. Define a function $\sigma: K \to K$ by letting $\sigma(a) = a^p$. a. Show that σ is an automorphism of K (it is called the Frobenius automorphism).

b. Show that σ has order n, i.e. that $\sigma^n = id_K$ and $\sigma^m \neq id_K$ for all m < n.

c. Show that $n \mid \varphi(p^n - 1)$ for every prime p and $n \in \mathbb{N}^+$.

Hint for c: Think about the multiplicative group $K \setminus \{0\}$.

Problem 2: Show that $x^{p^n} - x \in \mathbb{Z}/p\mathbb{Z}[x]$ equals the product of all monic irreducible polynomials in $\mathbb{Z}/p\mathbb{Z}[x]$ over all degrees $d \mid n$. For example, over $\mathbb{Z}/2\mathbb{Z}$, we have

$$x^{8} - x = x^{8} + x = x(x+1)(x^{3} + x + 1)(x^{3} + x^{2} + 1)$$

where the factors on the right are all of the monic irreducible polynomials of degree either 1 or 3.

Problem 3: Let $K = \mathbb{Z}/3\mathbb{Z}$. Notice that $x^3 + 2x + 1$ and $x^3 + 2x + 2$ are irreducible in K[x]. Let

$$F = K[x]/\langle x^3 + 2x + 1 \rangle \qquad \qquad E = K[x]/\langle x^3 + 2x + 2 \rangle$$

We know that F and E are both fields of order 27 and hence must be isomorphic. Writing $u = \overline{x}$ in F, we have $F = \{a + bu + cu^2 : a, b, c \in K\}$. Also, writing $w = \overline{x}$ in E, we have $E = \{a + bw + cw^2 : a, b, c \in K\}$. Describe an explicit isomorphism $\varphi : F \to E$. That is, give a formula for $\varphi(a + bu + cu^2)$.

Problem 4: Let K be a field with 25 elements.

- a. Show that K has an element u such that $u^2 = 3$.
- b. Show that $K = \mathbb{Z}/5\mathbb{Z}(u)$.
- c. Show that u + 1 is a generator of $K \setminus \{0\}$.

Hint for c: You can greatly minimize the computations with a bit of theory.

Problem 5:

a. Show that $8 \mid (k^2 - 1)$ for every odd $k \in \mathbb{N}^+$.

b. Show that $x^4 + 1$ splits in \mathbb{F}_{p^2} for every prime p.

c. Show that $x^4 + 1$ is reducible in $\mathbb{Z}/p\mathbb{Z}[x]$ for every prime p. (Note: It is irreducible in $\mathbb{Q}[x]$).