
Homework 8 : Due Wednesday, April 20

Discussion: Let p1, p2, . . . , pn be distinct prime numbers and let

F = Q(
√
p1,
√
p2, . . . ,

√
pn)

It is natural to believe that [F : Q] = 2n and to guess at the potential 2n many elements of GalQF .
However, it is far from obvious that things work out so nicely. Is

√
5 ∈ Q(

√
2,
√

3)? If it so happened
that

√
5 ∈ Q(

√
2,
√

3), then [Q(
√

2,
√

3,
√

5) : Q] = 4 and so GalQQ(
√

2,
√

3) would have only 4 elements
rather than the 8 you might expect (because if you know what an automorphism does to

√
2 and

√
3, then

what it does to
√

5 would be determined). Since {1,
√

2,
√

3,
√

6} is a basis for Q(
√

2,
√

3) over Q, we have√
5 ∈ Q(

√
2,
√

3) if and only if
√

5 is a Q-linear combination of {1,
√

2,
√

3,
√

6}. You probably believe
that

√
5 /∈ Q(

√
2,
√

3), but a direct attack would involve writing out an arbitrary such combination and
performing some tedious calculations.

Even if you succeed in showing that
√

5 /∈ Q(
√

2,
√

3) directly through algebraic manipulations, then at the
next step you would consider whether

√
7 is a Q-linear combination of {1,

√
2,
√

3,
√

5,
√

6,
√

10,
√

15,
√

30}.
As you can see, this gets out of hand quite rapidly. Although it is possible to make very clever use of
elementary tools to solve this problem, we will use Galois theory to show that everything works as you might
expect, and also to obtain significantly more information.

Problem 1: Let F be as above.
a. Show that Q ≺ F is a Galois extension.
b. Show that [F : Q] = 2m for some m with 0 ≤ m ≤ n.
c. Show that σ2 = idF for all σ ∈ GalQF .
d. Show that if a group H has the property that a2 = e for all a ∈ H, then H is abelian.
e. Conclude that GalQF is an abelian group with |GalQF | = 2m.

Our first major goal is to prove that m = n. To do this, we will use the Galois Correspondence to count
(or at least bound) the number of fields E with Q ≺ E ≺ F satisfying [E : Q] = 2, and compare it to the
number of subgroups of GalQF of index 2. We begin with the former.

Problem 2: Let F be as above.
a. Recall that an integer d is squarefree if it is not divisible by p2 for any prime p. Show that if c, d ∈ Z are
distinct squarefree numbers with c, d ≥ 2, then Q(

√
c) 6= Q(

√
d).

b. Show that there exists at least 2n − 1 many intermediate fields Q ≺ E ≺ F with [E : Q] = 2.

Interlude: Suppose that G is a finite abelian group with the property that every nonidentity element of G
has order a fixed prime p. We can view G as a vector space over Z/pZ by defining scalar multiplication
as k · a = a + a + · · · + a (k times) and noting that this is well-defined because |a| ∈ {1, p}. Since scalar
multiplication is just repeated addition, it follows that a subset H ⊆ G is a subgroup of G exactly when
H is a subspace of G. Furthermore, a mapping from G to another vector space over Z/pZ is a group
homomorphism exactly when it is a linear transformation.

The reason why it is useful to view G as a vector space space over Z/pZ rather than just as an abelian
group is because we can use linear algebra. Viewing G as a vector space over Z/pZ, it follows that G has a
basis, say B = {b1, b2, . . . , bk}. Using this basis, we conclude that |G| = pk and in fact G ∼= (Z/pZ)k, where
the isomorphism is as vector spaces over Z/pZ. This implies that G ∼= (Z/pZ)k as groups as well.
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Applying this in our case of GalQF with p = 2, we can use Problem 1 to deduce that k = m (because
|(Z/2Z)k| = 2k and 2k = 2m implies k = m), hence GalQF ∼= (Z/2Z)m. As mentioned above, we want
to think about the number of subgroups of (Z/2Z)m of index 2. Now a subgroup of (Z/2Z)m has index 2
exactly when it is 2m−1 many elements, which is exactly when it is a subspace of dimension m − 1. We
need to count the number of such subspaces, and we do this by examining bases. Every subspace of dimen-
sion m−1 has a basis of size m−1, but there are many such choices so we need to deal with the overcounting.

Problem 3: Let V be a vector space over Z/2Z of dimension m.
a. Find the number of (m− 1)-tuples (b1, b2, . . . , bm−1) such that {b1, b2, . . . , bm−1} is linearly independent.
b. Suppose that H is a subspace of V of dimension m−1. Find the number of (m−1)-tuples (b1, b2, . . . , bm−1)
such that {b1, b2, . . . , bm−1} is a basis for H.
c. Prove that there are exactly 2m − 1 many subspaces of V of dimension m− 1.

We are now ready to put all of the pieces together.

Problem 4: Let F be as above.
a. Show that m = n, so |GalQF | = 2n and in fact GalQF ∼= (Z/2Z)n.
b. Show that √pi+1 /∈ Q(

√
p1,
√
p2, . . . ,

√
pi) for all i.

c. Describe the elements of GalQF , and explain how you know that they are all automorphisms.
d. Show that F = Q(

√
p1 +

√
p2 + · · ·+√pn).

Problem 5: Let d1, d2, . . . , dn ∈ N+ be distinct squarefree numbers. Show that {
√
d1,
√
d2, . . . ,

√
dn} is

linearly independent over Q.
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