Midterm Exam: Due Wednesday, April 13 at the Beginning of Class

- You are free to use the course textbook, the homework solutions, your personal notes, and your previous homework in solving these problems.
- You may not communicate with anybody else (student or otherwise) about the problems on the exam. You may not consult or receive assistance from any source besides those mentioned above.
- Organize your solutions and write them neatly!

Problem 1: (5 points) Let $K \prec F$ be an algebraic extension. Suppose that R is a subring of F with $K \subseteq R$. Show that R is a field.

Problem 2: (5 points) Let $\xi = e^{2\pi i/5} \in \mathbb{C}$. Let m(x) be the minimal polynomial of $3 + \xi - \frac{7}{2}\xi^3$ over \mathbb{Q} . Prove that m(x) splits in $\mathbb{Q}(\xi)$.

Problem 3: (5 points) Let $K \prec F$ be a field extension. Let $u, w \in F$ be algebraic over K. Let g(x) be the minimal polynomial of u over K and let h(x) be the minimal polynomial of w over K. Show that g(x) is irreducible over K(w) if and only if h(x) is irreducible over K(u).

Problem 4: (5 points) Let $K \prec F$ be a field extension with [F:K] = 2. Suppose that charK = 0. Show that $K \prec F$ is a Galois extension.

Problem 5: (5 points) Working in \mathbb{C} , find the splitting field of $x^4 + 5x^2 + 6$ over \mathbb{Q} and compute its degree.

Problem 6: (7 points) Let $K \prec F$ be a finite extension. Suppose that $K \prec L \prec F$ and $K \prec M \prec F$. Define LM to be the smallest subfield of F containing $L \cup M$. Let $\ell = [L:K]$ and m = [M:K]. a. Show that $[LM:K] \leq \ell m$. b. Show that if $[LM:K] = \ell m$, then $L \cap M = K$.

Problem 7: (8 points) Let p be a prime and let $g(x) = x^p - x - 1 \in \mathbb{Z}/p\mathbb{Z}[x]$. Let F be a splitting field of g(x) over $\mathbb{Z}/p\mathbb{Z}$. Let $u \in F$ be a root of g(x). Show each of the following (in any order):

- a. Show that g(x) is irreducible in $\mathbb{Z}/p\mathbb{Z}[x]$.
- b. Show that u + k is a root of g(x) for all $k \in \mathbb{Z}/p\mathbb{Z}$.
- c. Show that $u^{p^p} = u$.
- d. Show that $[F : \mathbb{Z}/p\mathbb{Z}] = p$.