Homework 11: Due Friday, May 13

Required Problems

Problem 1: Let X be a set, and let \mathcal{U} be an ultrafilter on X. Show that if $\mathcal{T} \subseteq \mathcal{P}(X)$ is finite, and $\bigcup \mathcal{T} \in \mathcal{U}$, then there exists $A \in \mathcal{T}$ such that $A \in \mathcal{U}$. Furthermore, show that if the elements of \mathcal{T} are pairwise disjoint, then the A is unique.

Problem 2: Show that every ultrafilter on a finite set is principal.

Problem 3: We say that an ultrafilter \mathcal{U} on a set X is σ -complete if $\bigcap_{n \in \omega} A_n \in \mathcal{U}$ whenever $A_n \in \mathcal{U}$ for all $n \in \omega$. Show that an ultrafilter on ω is σ -complete if and only if it is principal. (The question of whether there exists a nonprincipal σ -complete ultrafilter on any set is a very deep and interesting one. If such an ultrafilter exists on a set X, then X is ridiculously large.)

Problem 4: Let $L = \{\mathsf{P}\}$ where P is a unary relation symbol. For each $n \in \mathbb{N}^+$, let

$$\sigma_n = \exists \mathbf{x}_1 \exists \mathbf{x}_2 \dots \exists \mathbf{x}_n (\bigwedge_{1 \le i < j \le n} (\mathbf{x}_i \ne \mathbf{x}_j) \land \bigwedge_{1 \le i \le n} \mathsf{P} \mathbf{x}_i)$$
$$\tau_n = \exists \mathbf{x}_1 \exists \mathbf{x}_2 \dots \exists \mathbf{x}_n (\bigwedge_{1 \le i < j \le n} (\mathbf{x}_i \ne \mathbf{x}_j) \land \bigwedge_{1 \le i \le n} \neg \mathsf{P} \mathbf{x}_i)$$

Let $\Sigma = \{\sigma_n : n \ge 1\} \cup \{\tau_n : n \ge 1\}$ (so Σ says that there infinitely many elements satisfying P and infinitely many not satisfying P), and let $T = Cn(\Sigma)$. Calculate $I(T, \aleph_\alpha)$ for each ordinal α . *Hint:* It may help to first think about $\alpha = 0$, $\alpha = 1$, and $\alpha = \omega$ to get the general pattern.

Problem 5: In the language $\mathcal{L} = \{0, 1, +, \cdot, <\}$, let \mathfrak{N} be the \mathcal{L} -structure $(\mathbb{N}, 0, 1, +, \cdot, <)$. Show that $I(Th(\mathfrak{N}), \aleph_0) = 2^{\aleph_0}$.

Hint: Use Problem 4b on Homework 7.

Challenge Problems

Problem 1: Show that there is an uncountable subset of \mathbb{R} which does not have a nonempty perfect subset.

Problem 2: Let \mathcal{U} be a nonprincipal ultrafilter on ω . Suppose that $\langle a_n \rangle_{n \in \omega}$ is a bounded sequence of real numbers.

a. Show that there exists a unique real number ℓ , denoted by \mathcal{U} -lim a_n , such that for all $\varepsilon > 0$, we have

$$\{n \in \omega : |a_n - \ell| < \varepsilon\} \in \mathcal{U}$$

b. Show that if $\lim a_n = \ell$, then \mathcal{U} -lim $a_n = \ell$.

It's not hard to show that \mathcal{U} -lim obeys the usual limit rules. Thus, a nonprincipal ultrafilter on ω gives a way to coherently define the limit of *any* bounded sequence of real numbers.