Homework 2: Due Friday, February 12

Required Problems

Problem 1: Definition 3.1.16 defines a function Subform: $Form_P \to \mathcal{P}(Form_P)$ recursively as follows:

- $Subform(A) = \{A\}$ for all $A \in P$.
- $Subform(\neg \varphi) = \{\neg \varphi\} \cup Subform(\varphi).$
- $Subform(\Diamond \varphi \psi) = \{ \Diamond \varphi \psi \} \cup Subform(\varphi) \cup Subform(\psi) \text{ for each } \Diamond \in \{ \land, \lor, \rightarrow \}.$

Suppose that $\varphi, \psi \in Form_P$ and that ψ is a substring of φ (i.e. there exists $\theta, \rho \in Sym_P^*$ such that $\varphi = \theta \psi \rho$). Show that $\psi \in Subform(\varphi)$.

Problem 2: Given any $\theta, \gamma \in Form_P$, Definition 3.1.17 describes a function $Subst_{\gamma}^{\theta}: Form_P \to Form_P$ (intuitively substituting θ for all occurrences of γ), which is defined recursively as follows:

•
$$Subst_{\gamma}^{\theta}(\mathsf{A}) = \begin{cases} \theta & \text{if } \gamma = \mathsf{A} \\ \mathsf{A} & \text{otherwise.} \end{cases}$$

• $Subst_{\gamma}^{\theta}(\neg \varphi) = \begin{cases} \theta & \text{if } \gamma = \neg \varphi \\ \neg Subst_{\gamma}^{\theta}(\varphi) & \text{otherwise.} \end{cases}$

•
$$Subst_{\gamma}^{\theta}(\Diamond \varphi \psi) = \begin{cases} \theta & \text{if } \gamma = \Diamond \varphi \psi \\ \Diamond Subst_{\gamma}^{\theta}(\varphi)Subst_{\gamma}^{\theta}(\psi) & \text{otherwise.} \end{cases}$$

for each $\Diamond \in \{\land, \lor, \rightarrow\}$.

Show that if $M: P \to \{0, 1\}$ is a truth assignment with $v_M(\theta) = v_M(\gamma)$, then $v_M(\varphi) = v_M(Subst^{\theta}_{\gamma}(\varphi))$ for every $\varphi \in Form_P$.

Problem 3: Let $Form_P^- = G(Sym_P^*, P, \{h_{\neg}, h_{\wedge}, h_{\vee}\})$. Define a function $Dual: Form_P^- \to Form_P^-$ recursively as follows:

- $Dual(A) = \neg A$ for all $A \in P$.
- $Dual(\neg \varphi) = \neg Dual(\varphi).$
- $Dual(\land \varphi \psi) = \lor Dual(\varphi)Dual(\psi).$
- $Dual(\lor \varphi \psi) = \land Dual(\varphi)Dual(\psi).$

Show that $Dual(\varphi)$ is semantically equivalent to $\neg \varphi$ for all $\varphi \in Form_P^-$.

We can extend the notion of semantic equivalence to sets of formulas.

Definition: Let $\Gamma_1, \Gamma_2 \subseteq Form_P$. We say that Γ_1 and Γ_2 are semantically equivalent if $\Gamma_1 \models \gamma_2$ for all $\gamma_2 \in \Gamma_2$ and $\Gamma_2 \models \gamma_1$ for all $\gamma_1 \in \Gamma_1$. Notice that this is equivalent to saying that whenever $M \colon P \to \{0, 1\}$ is a truth assignment, then $v_M(\gamma_1) = 1$ for all $\gamma_1 \in \Gamma_1$ if and only if $v_M(\gamma_2) = 1$ for all $\gamma_2 \in \Gamma_2$.

Definition: Let $\Gamma \subseteq Form_P$. We say that Γ is *independent* if there is no $\varphi \in \Gamma$ such that $\Gamma \setminus \{\varphi\} \models \varphi$. Notice that this is equivalent to saying that Γ is not semantically equivalent to any proper subset.

Problem 4:

a. Show that if Γ is finite, then Γ has an independent semantically equivalent subset. b. Show that there exists a set P and an infinite set $\Gamma \subseteq Form_P$ which has no independent semantically equivalent subset.

Problem 5: Let $P = \{A_0, A_1, A_2, A_3, A_4, A_5, A_6\}$. Show that there exists a boolean function $f \colon \{0, 1\}^7 \to \{0, 1\}$ such that $Depth(\varphi) \ge 5$ for all φ with $B_{\varphi} = f$. *Hint:* Do a counting argument.

Problem 6: For each $\varphi \in Form_P$, give a deduction showing that $\varphi \vdash \neg \neg \varphi$.

Challenge Problems

Problem 1: Show that every countable set is semantically equivalent to an independent set.