Homework 4: Due Friday, February 26

Required Problems

Problem 1:

a. Let $\mathcal{L} = \{f\}$ where f is a unary function symbol. Show that the class of all \mathcal{L} -structures \mathcal{M} such that $f^{\mathcal{M}}$ is a bijection on M is an elementary class in the language \mathcal{L} .

b. A directed graph is a nonempty set V of vertices together with a set $E \subseteq V \times V$ where $(u, w) \in E$ intuitively represents an edge originating at u and terminating at w. A cycle in a directed graph is a sequence $u_1u_2 \cdots u_k$ of vertices, such that $(u_i, u_{i+1}) \in E$ for $1 \leq i \leq k-1$ and $(u_k, u_1) \in E$. If we let $\mathcal{L} = \{R\}$, where R is a binary relation symbol, then directed graphs correspond exactly to \mathcal{L} -structures. Show that the class of directed acyclic graphs (that is, directed graphs with no cycles) is a weak elementary class in this language.

Problem 2:

a. Let $\mathcal{L} = \{f\}$ where f is a binary function symbol. Show that $(\mathbb{N}, +) \not\equiv (\mathbb{Z}, +)$. b. Let $\mathcal{L} = \{f\}$ where f is a binary function symbol. Define $g: \{1, 2, 3, 4\}^2 \rightarrow \{1, 2, 3, 4\}$ and $h: \{a, b, c, d\}^2 \rightarrow \{a, b, c, d\}$ by

g	1	2	3	4	h	a	b	с
1	4	3	1	1	a	b	b	с
2	2	2	1	2	b	a	d	d
	1	4	1	4	с	b	a	с
4	1	3	2	3	d	d	b	с

Interpret the diagrams as follows. If $m, n \in \{1, 2, 3, 4\}$, to calculate the value of g(m, n), go to row m and column n. For example, g(1, 2) = 3. Similarly for h. Show that $(\{1, 2, 3, 4\}, g) \not\equiv (\{a, b, c, d\}, h)$.

c. Let $\mathcal{L} = \{\mathsf{R}\}$ where R is a 3-ary relation symbol. Let \mathcal{M} be the \mathcal{L} -stucture where $M = \mathbb{R}$ and $\mathsf{R}^{\mathcal{M}}$ is the "betweeness relation", i.e. $\mathsf{R}^{\mathcal{M}} = \{(a, b, c) \in \mathbb{R}^3 : \text{Either } a \leq b \leq c \text{ or } c \leq b \leq a\}$. Let \mathcal{N} be the \mathcal{L} -stucture where $N = \mathbb{R}^2$ and $\mathsf{R}^{\mathcal{N}}$ is the "collinearity relation", i.e. $\mathsf{R}^{\mathcal{N}} = \{((x_1, y_1), (x_2, y_2), (x_3, y_3)) \in (\mathbb{R}^2)^3 : \text{There}$ exists $a, b, c \in \mathbb{R}$ with either $a \neq 0$ or $b \neq 0$ such that $ax_i + by_i = c$ for all $i\}$. Show that $\mathcal{M} \not\equiv \mathcal{N}$.

Problem 3: Let $\mathcal{L} = \{f\}$ where f is a binary function symbol. Let \mathcal{M} be the \mathcal{L} -structure where $M = \{0, 1\}^*$ and $f^{\mathcal{M}} \colon M^2 \to M$ is concatenation (i.e. $f^{\mathcal{M}}(\sigma, \tau) = \sigma \tau$).

- a. Show that $\{\lambda\} \subseteq M$ is definable in \mathcal{M} .
- b. Show that for each $n \in \mathbb{N}$, the set $\{\sigma \in M : |\sigma| = n\}$ is definable in \mathcal{M} .
- c. Find all automorphisms of \mathcal{M} .
- d. Show that $\{\sigma \in M : \sigma \text{ contains no } 1's\} = \{0\}^*$ is not definable in \mathcal{M} .

Problem 4: Let $\mathcal{L} = \{f\}$ where f is a binary function symbol. Let \mathcal{M} be the \mathcal{L} -structure where $M = \mathbb{N}$ and $f^{\mathcal{M}}: M^2 \to M$ is multiplication (i.e. $f^{\mathcal{M}}(m, n) = m \cdot n$).

- a. Show that $\{0\} \subseteq M$ is definable in \mathcal{M} .
- b. Show that $\{1\} \subseteq M$ is definable in \mathcal{M} .
- c. Show that $\{p \in M : p \text{ is prime}\}$ is definable in \mathcal{M} .
- d. Find all automorphisms of \mathcal{M} .

e. Show that $\{n\} \subseteq M$ is not definable in \mathcal{M} whenever $n \geq 2$.

f. Show that $\{(k, m, n) \in M^3 : k + m = n\}$ is not definable in \mathcal{M} .

Problem 5: Let $\mathcal{L} = \{\mathsf{e},\mathsf{f}\}$ be the basic group theory language. Let \mathcal{M} be the symmetric group S_4 , and let $X \subseteq \mathcal{M}$ be the set of all transpositions (i.e. 2-cycles) in S_4 . Show that X is definable in \mathcal{M} . If you give an explicit formula, you should explain why it works.