Homework 6: Due Friday, March 18

Required Problems

Problem 1: Using the fact that *DLO* has *QE*, determine (with proof) all definable subsets of \mathbb{Q}^2 in the structure $(\mathbb{Q}, <)$.

Problem 2: Let $\mathcal{L} = \{R\}$ where R is a binary relation symbol. Consider the \mathcal{L} -structure \mathcal{M} that is the linear ordering obtained by putting one copy of \mathbb{R} after another. More formally, $M = (\mathbb{R} \times \{0\}) \cup (\mathbb{R} \times \{1\})$, where we order elements as usual in each copy, and where (a, 0) < (b, 1) for all $a, b \in \mathbb{R}$. Show that \mathcal{M} is not isomorphic to $(\mathbb{R}, <)$.

Note: If we do the same construction with \mathbb{Q} , then the resulting linear ordering is a countable model of *DLO*, so is isomorphic to $(\mathbb{Q}, <)$.

Problem 3: Let $\mathcal{L} = \{0, 1, +\}$ where 0 and 1 are constant symbols, and + is a binary function symbol. Let \mathcal{M} be the \mathcal{L} -structure where $M = \mathbb{Z}$, and where the symbols are interpreted in the usual way. Let $T = Th(\mathcal{M}).$

a. Show that if $X \subseteq \mathbb{Z}$ is definable in \mathcal{M} by a quantifier-free formula, then X is either finite or cofinite.

b. Show that T does not have QE by finding a definable subset of \mathbb{Z} that is neither finite nor cofinite.

Problem 4: Let $\mathcal{L} = \{\mathsf{R}\}$ where R is a binary relation symbol. For each $n \in \mathbb{N}^+$, let σ_n be the sentence

$$\forall y \exists x_1 \exists x_2 \cdots \exists x_n (\bigwedge_{1 \leq i < j \leq n} \neg (x_i = x_j) \land \bigwedge_{i=1}^n \mathsf{R} x_i y)$$

and let τ_n be the sentence

$$\exists x_1 \exists x_2 \cdots \exists x_n (\bigwedge_{1 \leq i < j \leq n} \neg (x_i = x_j) \land \bigwedge_{1 \leq i < j \leq n} \neg \mathsf{R} x_i x_j)$$

Finally, let

$$\Sigma = \{ \forall \mathsf{x}\mathsf{Rxx}, \forall \mathsf{x}\forall \mathsf{y}(\mathsf{Rxy} \to \mathsf{Ryx}), \forall \mathsf{x}\forall \mathsf{y}\forall \mathsf{z}((\mathsf{Rxy} \land \mathsf{Ryz}) \to \mathsf{Rxz}) \} \cup \{\sigma_n : n \in \mathbb{N}^+\} \cup \{\tau_n : n \in \mathbb{N}^+\}$$

and let $T = Cn(\Sigma)$. Notice that models of T are equivalence relations such that there are infinitely many equivalence classes, and such that every equivalence class is infinite.

a. Show that any two countable models of T are isomorphic, and hence that T is complete.

b. Let \mathcal{M} be the \mathcal{L} -structure where $M = \{n \in \mathbb{N} : n \geq 2\}$ and $\mathsf{R}^{\mathcal{M}} = \{(a, b) \in M^2 : \text{For all primes } p, \text{ we have } p \mid a \text{ if and only if } p \mid b\}$. Let \mathcal{N} be the \mathcal{L} -structure where $N = \mathbb{R}^2$ and $\mathsf{R}^{\mathcal{N}} = \{((a_1, b_1), (a_2, b_2)) \in N^2 :$ $a_2 - a_1 = b_2 - b_1$. Show that $\mathcal{M} \equiv \mathcal{N}$ and $\mathcal{M} \ncong \mathcal{N}$.

c. Show that T has QE.

Problem 5: Let $\mathcal{L} = \{f\}$, where f is a unary function symbol. For each $n \in \mathbb{N}^+$, let σ_n be the sentence $\forall x \neg (ff \cdots fx = x)$, where there are *n* many f's. Let

$$\Sigma = \{ \forall \mathsf{x} \forall \mathsf{y}(\mathsf{f}\mathsf{x} = \mathsf{f}\mathsf{y} \to \mathsf{x} = \mathsf{y}), \forall \mathsf{y} \exists \mathsf{x}(\mathsf{f}\mathsf{x} = \mathsf{y}) \} \cup \{ \sigma_n : n \in \mathbb{N}^+ \}.$$

Let $T = Cn(\Sigma)$. Thus, models of T are structures where f is interpreted as a bijection without any finite cycles. For example, the structure \mathcal{M} with universe $M = \mathbb{Z}$ and with $f^{\mathcal{M}}(a) = a + 1$ for all $n \in \mathbb{Z}$ is a model of T.

a. Show that all models of T are infinite.

b. Give an example of a model of T that is not isomorphic to the example described above.

c. Show that T has QE.

Problem 6: Let $\mathcal{L} = \{R\}$ where R is a binary relation symbol, and let $x, y \in Var$ be distinct. a. Give a deduction showing that $\exists x \forall y \mathsf{R} x y \vdash \forall y \exists x \mathsf{R} x y$.

b. Show that $\forall y \exists x Rxy \not\vdash \exists x \forall y Rxy$.

Problem 7: Let \mathcal{L} be the basic group language, and let Σ be the group theory axioms, i.e.

$$\Sigma = \{ \forall x \forall y \forall z (fxfyz = ffxyz), \forall x (fex = x \land fxe = x), \forall x \exists y (fxy = e \land fyx = e) \}.$$

Give a deduction showing that $\Sigma \vdash \forall x (fex = e \rightarrow x = e)$.