Homework 7: Due Friday, April 15

Required Problems

Problem 1: Let $\mathcal{L} = \{\mathsf{R}\}$ where R is a binary relation symbol.

a. Show that the class of directed acyclic graphs is not an elementary class in the language \mathcal{L} . (You showed that it was a weak elementary class in Homework 4).

b. Show that the class of all connected graphs is not a weak elementary class in the language \mathcal{L} . (A graph (V, E) is *connected* if whenever $v, w \in V$ are distinct, there exists $u_1, u_2, \ldots, u_n \in V$ such that $u_1 = v$, $u_n = w$, and $(u_i, u_{i+1}) \in E$ for all i with $1 \leq i \leq n-1$).

Problem 2: Let $\mathcal{L} = \{e, f\}$ where e is a constant symbol and f is a binary function symbol.

a. Show that the class of all simple abelian groups is not a weak elementary class in the language \mathcal{L} . (Recall that an abelian group is simple if and only if it has no proper nontrivial subgroup, since all subgroups are normal.)

b. Show that the class of all torsion-free abelian groups (that is, abelian groups in which every nonidentity element has infinite order) is a weak elementary class but not an elementary class in the language \mathcal{L} .

Problem 3: Let $\mathcal{L} = \{R\}$ where R is a binary relation symbol. Let \mathcal{Q} be the \mathcal{L} -structure ($\mathbb{Q}, <$). Suppose that \mathcal{M} is an infinite \mathcal{L} -structure which is a model of

$$\Sigma = \{ \forall x \neg \mathsf{Rxx}, \forall x \forall y \forall z ((\mathsf{Rxy} \land \mathsf{Ryz}) \rightarrow \mathsf{Rxz}), \forall x \forall y (\mathsf{Rxy} \lor \mathsf{Ryx} \lor x = y) \}$$

(i.e. \mathcal{M} is an infinite strict linear ordering). Show that there exists a model \mathcal{N} of Σ such that $\mathcal{M} \equiv \mathcal{N}$ and such that there exists an embedding from \mathcal{Q} to \mathcal{N} .

Stated more succinctly, show that for every infinite linear ordering, there exists an elementarily equivalent linear ordering which embeds the rationals.

Problem 4: Let $\mathcal{L} = \{0, 1, +, \cdot, <\}$ be the language of arithmetic. For each $n \in \mathbb{N}$, let $\varphi_n(\mathsf{x})$ be the formula $\exists \mathsf{y}(\underline{n} \cdot \mathsf{y} = \mathsf{x}).$

a. Show that for any nonstandard model of arithmetic \mathcal{M} , there exists $a \in \mathcal{M} \setminus \{\mathbf{0}^{\mathcal{M}}\}$ such that $(\mathcal{M}, a) \vDash \varphi_n$ for all $n \in \mathbb{N}^+$.

b. Let $P \subseteq \mathbb{N}$ be the set of primes numbers and suppose that $Q \subseteq P$. Show that there exists a countable nonstandard model of arithmetic \mathcal{M} and an $a \in M$ with both of the following properties:

- $(\mathcal{M}, a) \vDash \varphi_p$ for all $p \in Q$.
- $(\mathcal{M}, a) \vDash \neg \varphi_p$ for all $p \in P \setminus Q$.

Challenge Problems

Problem 1: Let \mathcal{M} be a nonstandard model of arithmetic. Show that $\{\underline{n}^{\mathcal{M}} : n \in \mathbb{N}\} \subseteq M$ is not definable in \mathcal{M} .