Homework 9: Due Friday, April 29

Problem 1: Let $(W_1, <_1)$ and $(W_2, <_2)$ be well-orderings.

a. Let $W = (W_1 \times \{0\}) \cup (W_2 \times \{1\})$, and define a relation < on W as follows:

- 1. For any $v, w \in W_1$, we have (v, 0) < (w, 0) if and only if $v <_1 w$.
- 2. For any $y, z \in W_2$, we have (y, 1) < (z, 1) if and only if $y <_2 z$.
- 3. For any $w \in W_1$ and $z \in W_2$, we have (w, 0) < (z, 1).

Show that (W, <) is a well-ordering. We call W the sum of W_1 and W_2 and denote it by $W_1 \oplus W_2$. b. Let $W = W_1 \times W_2$, and define a relation < on W as follows. For any $v, w \in W_1$ and $y, z \in W_2$, we have (v, y) < (w, z) if and only if either $v <_1 w$ or $(v = w \text{ and } y <_2 z)$. Show that (W, <) is a well-ordering. We call W the product of W_1 and W_2 and denote it by $W_1 \otimes W_2$.

Problem 2: In this problem, α , β , and γ are always ordinals.

- a. Show that if $\alpha \leq \beta$, there exists a unique γ such that $\alpha + \gamma = \beta$.
- b. Give examples of $\alpha \leq \beta$ such that the equation $\gamma + \alpha = \beta$ has 0, 1, and infinitely many solutions for γ .

Problem 3: Show that if α is an infinite ordinal, then $S(\alpha) \approx \alpha$.

Problem 4: Let $A \subseteq \mathbb{R}$. Suppose that (A, <) is a well-ordering under the usual ordering < on \mathbb{R} . Show that A is countable.

Hint: Define an injective function from A to \mathbb{Q} .

Problem 5: Show that for every set A, there exists a transitive set T with the following properties:

- $A \subseteq T$.
- $T \subseteq S$ for all transitive sets S with $A \subseteq S$.

T is called the *transitive closure* of A.

Problem 6: Define a transfinite sequence of sets V_{α} for $\alpha \in \mathbf{ORD}$ by:

- 1. $V_0 = \emptyset$.
- 2. $V_{\alpha+1} = \mathcal{P}(V_{\alpha})$ for all ordinals α .
- 3. $V_{\alpha} = \bigcup \{ V_{\beta} : \beta < \alpha \}$ for all limit ordinals α .
- a. Show that V_{α} is transitive for all ordinals α .
- b. Show that if $\beta < \alpha$, then $V_{\beta} \subseteq V_{\alpha}$.

c. Show that if $x, y \in V_{\omega}$, then $\bigcup x, \{x, y\}$, and $\mathcal{P}(x)$ are all elements of V_{ω} .

(Working in ZFC without Foundation, one can show that the Axiom of Foundation is equivalent to the statement that for every set x, there exists an ordinal α with $x \in V_{\alpha}$.)

Challenge Problems

Problem 1: Show that for every ordinal α , there exists ordinals $\beta_1, \beta_2, \ldots, \beta_k$ with $\alpha \ge \beta_1 > \beta_2 > \cdots > \beta_k$ and $n_1, n_2, \ldots, n_k \in \omega$ such that

$$\alpha = \omega^{\beta_1} \cdot n_1 + \omega^{\beta_2} \cdot n_2 + \dots + \omega^{\beta_k} \cdot n_k.$$

Furthermore, show that the β_i and n_i in such a representation are unique. This expression of an ordinal in "base ω " is called *Cantor Normal Form*.